Strichartz Estimates for Wave Equations with Charge Transfer Hamiltonians
نویسنده
چکیده
We prove Strichartz estimates (both regular and reversed) for a scattering state to the wave equation with a charge transfer Hamiltonian in R3: ∂ttu− ∆u + m ∑ j=1 Vj (x− ~vjt)u = 0. The energy estimate and the local energy decay of a scattering state are also established. In order to study nonlinear multisoltion systems, we will present the inhomogeneous generalizations of Strichartz estimates and local decay estimates. As an application of our results, we show that scattering states indeed scatter to solutions to the free wave equation. These estimates for this linear models are also of crucial importance for problems related to interactions of potentials and solitons, for example, in [GC4].
منابع مشابه
Strichartz Estimates for Charge Transfer Models
In this note, we prove Strichartz estimates for scattering states of scalar charge transfer models in R3. Following the idea of Strichartz estimates based on [3, 10], we also show that the energy of the whole evolution is bounded independently of time without using the phase space method, as for example, in [5]. One can easily generalize our arguments to Rn for n ≥ 3. We also discuss the extens...
متن کاملStrichartz Estimates for Wave Equations with Coefficients of Sobolev Regularity
Wave packet techniques provide an effective method for proving Strichartz estimates on solutions to wave equations whose coefficients are not smooth. We use such methods to show that the existing results for C1,1 and C1,α coefficients can be improved when the coefficients of the wave operator lie in a Sobolev space of sufficiently high order.
متن کاملENDPOINT STRICHARTZ ESTIMATES By MARKUS KEEL and TERENCE TAO
We prove an abstract Strichartz estimate, which implies previously unknown endpoint Strichartz estimates for the wave equation (in dimension n 4) and the Schrödinger equation (in dimension n 3). Three other applications are discussed: local existence for a nonlinear wave equation; and Strichartz-type estimates for more general dispersive equations and for the kinetic transport equation.
متن کاملMetaplectic Representation on Wiener Amalgam Spaces and Applications to the Schrödinger Equation
We study the action of metaplectic operators on Wiener amalgam spaces, giving upper bounds for their norms. As an application, we obtain new fixed-time estimates in these spaces for Schrödinger equations with general quadratic Hamiltonians and Strichartz estimates for the Schrödinger equation with potentials V (x) = ±|x|.
متن کاملGeneralized Strichartz Estimates on Perturbed Wave Equation and Applications on Strauss Conjecture
The purpose of this paper is to show a general Strichartz estimate for certain perturbed wave equation under known local energy decay estimates, and as application, to get the Strauss conjecture for several convex obstacles in n = 3, 4. Our results improve on earlier work in Hidano, Metcalfe, Smith, Sogge and Zhou [14]. First, and most important, we can drop the nontrapping hypothesis and handl...
متن کامل